1, 2, 3 Engineer!

(This is Part 1 of a three part series focused on using the Engineering Design Process to support a culture of creative problem-solving in your classroom)

At ProjectEngin, we have long held the belief that sustainable professional development starts with a focus on culture in both the classroom and school. Our initial contact with educators often involves whole school or district groups covering diverse grade levels, backgrounds, and areas of expertise. We always begin by stressing and illustrating through hands-on activities that Engineering Design highlights creative problem-solving in all disciplines. Our message in all of these workshops is that by highlighting key parts of the Engineering Design Process educators can focus on curricular concepts while following a skills-based framework.

In this three part series, we will share some of our workshop approaches by highlighting what we consider to be the three main stages of the Engineering Design Process. One of our mantras is that the word “process” really is the key to connected and impactful learning. Following the Engineering Design Process enables educators to highlight specific skills, to make clear connections to curricular content, and to focus on the journey and not just the destination or final product. We are committed to the idea that Engineering Design is a natural process that should be easy for teachers to implement.  In this article and the two blog entries that will follow, we offer a model to help you create a culture of creative problem-solving in your classroom.

Our goal is always to make things manageable and to enable teachers to build on the practices that they already employ. We can all relate to what we consider the three main phases of Engineering Design:

  1. Know your problem or challenge.
  2. Know your options
  3. Develop a solution


Let’s begin at the beginning by considering Phase 1 – Know your problem or challenge.Design Space We think of this as mapping out your design space. It is what makes solving a problem or meeting a solution different from simply “making” something.

This first step is simple but often neglected or minimized. We all know that you cannot solve a problem or meet a challenge if you don’t really know what it is.  (Please note – we often use the word “challenge” instead of “problem” when working with students. It seems to lessen the tendency to go straight to solution.)

The Next Generation Science Standards (NGSS) focuses on three ideas when discussing the need to clearly define a problem. We think they are all key steps in getting your projects off to a solid start.

  1. State the challenge (problem) clearly. For example, the challenge of getting to work on time can stem from a failure to get up early enough, traffic issues, or underestimating time needed for other tasks. It helps to know what the issue really is before developing a solution. If you hit “Snooze” an infinite amount of times no matter what, you would already be behind schedule even if you were driving the sole vehicle on the road. Addressing the wrong issue by developing a different way to commute may not be the best answer. Make sure that you and your students have a clear understanding of what the core problem or challenge is. Ask questions, look for cause and effect relationships, and identify impacts.

Quotefancy Einstein problem

  1. Determine what the constraints are. The next step in knowing your problem is to understand what constraints or limitations impact the current situation and the possible solutions. Think of constraints as positive motivation. If we didn’t have to deal with limitations such as time, money, and resources, innovation would rarely occur. Constraints will generally be common issues that all groups will face as they design. Some constraints derive from the science that relates to a project, so this stage is a natural point for making connections to curricular concepts. Do not give students an unconstrained challenge but be careful of having too many constraints since that can limit creativity. Brandon Rodriguez has a great TEDEd lesson about The Power of Creative Constraints that can help you and your students see the value in having some constraints.
  1. Determine the criteria for a successful solution. While constraints may be the same across all groups developing a solution to a challenge, criteria are most likely different. Criteria are the goals that a group defines as being the hallmarks of a successful solution. Criteria form each group’s identity and should also reflect an understanding of the needs of the targeted end-user. Think of the many different car models available. In order to function, be safe, and appeal economically to the average consumer, they all are designed within many of the same constraints. The differences in body styles, special packages, and interior details are all designed to address the criteria that matter to specific users while reflecting the brand image of each particular company.

Keep in mind that when student groups create criteria they are developing a      “rubric” for a successful design. They should be able to indicate how a solution meets their most important criteria and how it was impacted by the given constraints.

Think of this initial process of knowing your problem as defining the space for launching the challenge. By identifying constraints and criteria, you create a situation that moves beyond making or simply “doing a project”. A critical key to successfully managing students’ Engineering Design projects is to continually bring their focus back to these early definitions. Criteria and constraints should provide a litmus test for design decisions, helping to foster critical thinking and analysis. And they should be present in all phases of the process, not just in the initial planning.problem

A well thought-out start will go a long way toward developing a solution and it will aid in keeping the focus on process.  Don’t skip this step. In its absence, student work will quickly become making for the sake of making and you will lose a valuable opportunity to foster mastery of concepts through application.

Coming in Part 2 – Navigating the design space to consider multiple options.

Posted in Uncategorized | Tagged , , , , , | Leave a comment

EngineerGOOD: Engineering Solutions and Developing Global Competence


At ProjectEngin, we view the inclusion of Engineering Design practices and thinking in STEM classes as being a critical component in the development of creative and collaborative problem solving skills. But very few problems occur in isolation and even fewer solutions are free of negative impacts. The students who are in our classrooms today are facing a highly networked world full of both amazing potential and enormous challenges.

Globally competentThey will need to work together to develop new ideas, products, and ways of doing things. And just as importantly, they will need to understand the people and places that are impacted by both the problems and the solutions. STEM skills are important, but global view and systems thinking are critical if solutions and innovations are to be effective and sustainable. The goal of education has always been to help young people lead meaningful lives. However, it has become increasingly clear that education itself needs to be redefined to include the development of skills, not just the delivery of information. Veronica Mansilla of Harvard’s ProjectZero and the Asia Society’s Anthony Jackson cite the ability to identify and explain issues of global significance, along with the ability to generate solutions, as being critical to education in this interconnected world. Global Competence


EngineerGOOD curricular projects feature all three key components of a 21st century education at the center: creative problem-solving, global competency, and systems thinking. They embrace a model of project-based learning that tackles authentic global challenges based on the United Nations’ Sustainable Development Goals.sdg Students follow the Engineering Design Process to generate solutions and prototypes designed for a specific location. Allowing students to choose specific end-users in the context of a larger, global issue encourages an understanding of culture and increased engagement. Instead of learning about problems, students focus on solutions. By including a focus on suitable, small-scale technology, students are able to consider their solution as part of a larger system and to consider both positive and negative effects.

Young people cannot envision or design a desalination plant to supply water to an entire country, but they can develop simple filtration devices for a small village in Kenya or Bangladesh. They may not be able to plan and connect a large scale solar array to the grid, but they can combine small (pico) PV panels with rechargeable batteries and LEDs to create a light to do homework by anywhere in the world. We believe that today’s students can engineer a better future, one place, one project at a time. But to fully realize their potential, we need to re-engineer the learning experiences that they have today.

Contact ProjectEngin to learn more.






Posted in Uncategorized | Tagged , , , , , , , | 1 Comment

The Three Terrible T’s

What are the three practices you need to avoid if you hope to create lifelong learners? At ProjectEngin, we call them the three T’s.





Yes, we started our list with teaching!

We often equate teaching to with learning, talking at with discussing, and testing with assessing understanding. But maybe it is time to move away from doing things to or at students and to start doing things with them.

We are trained as “teachers” but what if we joined our students as learners? Clearly, it is time to change the practice from “teaching to” to “learning with”.  What a great way to model lifelong learning! It would be so much easier to focus on critical thinking and collaboration as vital parts of education.

What if we stopped “talking at” or “to”, and began to “talk with”? Think how much more we would model communication, problem-solving, and empathy.

What if instead of using tests to assess knowledge, we focused on challenges and tasks in order to assess understanding? The application of ideas requires a deeper understanding and an awareness of connections as well as systems impacts. Applying knowledge leads one step closer to mastery and requires innovative and creative thought.

We work within the confines of an education system that has roots in the 1800s.overwhelmed student It was a time when content was king and the classroom was a way to disseminate facts. Two hundred years later, content is at our fingertips and teaching needs to go far beyond both the transmission of information and a simple check to see if it has been received. Students need to learn how to make use of content and work with and expand ideas. Every classroom needs to include active ways to build the skills needed to access, apply, and extend information. And you need a way to assess those skills along with content.

So, as you re-think your approach for the new school year that begins next month, think about replacing the 3 T’s with the 4 C’s, Super Skills for the 21st Century .  Develop a classroom culture that values critical thinking, creativity, collaboration and communication by learning with and talking with your students. Look for real understanding and assess it through the application, extension, and innovation of ideas.

It is time to stop telling your students “how to” swim and to let them jump into the water!

swimmers on side of pool                   swimmer in pool

If you need help diving in, contact us to learn how you can banish the Terrible T’s and have a terrific year!

Posted in Uncategorized | Tagged , , , , | Leave a comment

Engineering Your STEM Classes: 3 Key Ideas for Success

Henry Ford QuoteOur work at ProjectEngin has allowed us to support a wide range of educators in a variety of schools and classrooms as they work to include more E in STEM. All have the goal of creating more skills-based, active learning experiences for their students. And most of them report encountering the same obstacles. As a vision-based enterprise, we always try to keep our eye on the goal of more meaningful education. We believe educators who are working to include more Engineering should keep the following three ideas in mind.

  1. Work to support imagination, teach creativity, and focus on process.

We like to think of imagination as free-range thinking that just happens. Young children excel at it, but very few aspects of formal education embrace it. Allow time to, as Albert Einstein put it, “…develop the childlike inclination for play”.  We often use Quick Build activities to engage imaginations. This are hands-on short building challenges involving unlikely materials.

Creativity is the skill of harnessing your imagination and making the connections needed to create reality out of your imaginative ideas. This is where brainstorming, brainwriting, divergent thinking, and other activities need to be actively taught, particularly in middle and high school classes where the quest for the “one right answer” begins to dominate. The book “Thinkertoys” by Michael Michalko is a great resource for creativity exercises.

Innovation and engineering are processes. This is probably the most common of all of our mantras at ProjectEngin. Following a process that starts with knowing your end user and investigating all of your options is the key to good design. diverge convergeThe Engineering Design Process is often a balance between divergent and convergent thinking as you move from the consideration of all possible solutions to the building and testing of a protoype that best fits a given design space.  All of the skills that are the key to 21st century learning are embedded in the process of innovation and design. Our next post will highlight key steps in the process.

  1. Allow for student choice and voice.

No Engineering Design project should be scripted to result in identical solutions from all student groups. Ever! Present an overall design challenge but allow students to identify the end-user. By mapping out the constraints and criteria relevant to their target audience, students will create unique solutions to common challenges. In our EngineerGOOD curricular modules, the challenges are based on global issues, but students choose specific places for which to develop solutions. Global view and cultural empathy follow as a natural consequence. Even a simple, generic bridge-building challenge can allow for student choice by allowing for variations in prototyping materials and the identification of a real or hypothetical location and purpose. Requiring clear connections between design and the target user reinforces the idea of following a process while enabling the creation of unique solutions.


  1. Plan time for modifications. The first attempt should never be the final result.

Many beginning “Engineering” teachers skip this step because of time pressures and the need to “cover” new material. Don’t fall into this trap! The modification phase is often where the real “aha” moments happen for students. Allow only 2 or 3 changes, one at a time. Require a justification for each and you will see students begin to make clear connections between cause and effect. If it is too difficult to modify prototypes because of construction issues or serious time constraints, request a reflection on planned modifications or next steps for implementation. Make it clear that the first model is just a beginning and embrace the facts that mistakes and failures provide a platform for genuine improvement.

Light Bulb

Most of all, model all of the above in your own practice! Engineer your activities by imagining how much fun school could be, think beyond the box, frame it all in a reproducible process, and always allow yourself time for reflection and modification once the activity is completed. Keep these three ideas in mind and avoid common obstacles as you focus on the goal of a better learning experience for all of your students!

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

To Code or Not to Code – Why neither is the answer to getting more girls interested in STEM fields

Countless research studies and initiatives have focused on our inability to attract female students to STEM fields. The percentages for women in Engineering has only budged by a few percentage points in the past few decades since I graduated with an Engineering degree. This summary from the National Girls Collaborative does a great job of laying out all of the statistics from K-12 through college and into the workforce. Their estimate of women making up 15% of the Engineering workforce is actually generous compared to some others that range from 11-15%.

When you consider that the challenges of the future will require highly innovative solutions, this lack of diversity is alarming. All innovation experts point out that diversity is a key factor in enhancing creativity. Katherine Phillips states that “… if you want to build teams or organizations capable of innovating, you need diversity. Diversity enhances creativity. It encourages the search for novel information and perspectives, leading to better decision making and problem solving. Diversity can improve the bottom line of companies and lead to unfettered discoveries and breakthrough innovations.” (Scientific American)

Everyone is aware of the issue, but it often seems that few have followed any real process in defining the problem. We simply “try” solutions.  Clearly we cannot afford to give up the creative potential of half the world’s population. The real question is what makes girls lose interest in STEM or even fail to ever become interested in it. The codechallenge lies in increasing and maintaining that engagement. But is the best solution we have to teach coding? Is that the real technological challenge that we face moving forward? And are we being fair in putting resources into coding as the way to attract more girls to STEM?

Coding is definitely a powerful tool, but it is a tool. You use it to program and develop apps, but it does not identify what apps you need and what technology must be developed to better meet human needs. You don’t need coding for that higher level approach. You need vision, creativity, critical thinking, the ability to communicate and collaborate, and strong problem solving skills. You need to be able to engineer and you need to use many of the skills that young children have naturally. You need to make connections, think laterally, and consider systems impacts. Sequential, step-by-step thinking will not help students to envision the big picture that the world presents. Teaching coding and expecting technological innovation is like teaching spelling and expecting a Pulitzer Prize winning novel.

And yet, many schools, districts, and states seem to think coding, particularly for girls, is the answer to preparing students for the future. It becomes their “STEM initiative”.  In reality, it prepares the factory workers of the future. Henry Ford said that, “If I had asked people what they wanted, they would have said faster horses.” Coding creates faster programmers, but it does little to create those who can imagine the technologies that will improve our lives. It does not take us to the next level or allow us to envision new ideas.

One of the more valid answers to the question of young women leaving STEM fields is that it does not engage them. The effort that it takes to move ahead as a minority in the field is not worth the final reward. And if that reward is more apps, it probably isn’t. But look at the progress women have made in fields like medicine and law. These are careers that allow them to interact with and help others. They are areas where problem solving is the norm and an understanding of the patient or client is critical. We need to convince girls and young women that engineers can help people and make the world a better worldplace. Confining our solution to the diversity issue in STEM to practices like coding limits the creativity and talent present in every young child to a world of steps and sequences. It will do little to bring more girls and creative thinkers into a world that is increasingly dependent on innovation. The solution we should all be prototyping should showcase the relevance of math and science in the engineering of a better future. If we embrace the true interconnectedness of STEM and stop supporting silos of learning or mastery of specific routine skills, the real innovators will show up in all of our classrooms.

Posted in Uncategorized | Tagged , , , , , | Leave a comment

Engineering the Three Dimensions of STEM Professional Development

At ProjectEngin, we focus on supporting the inclusion of Engineering Design in K-12 education. Much of our initial exposure to teachers, schools, and districts is through requests for workshops. Many such requests involve the magic acronym “STEM”. As a result, our first challenge in structuring impactful workshops is to identify what a school or teacher really means by STEM.  Sometimes it is an adjective – “we want to be a STEM school”, “we have one STEM teacher”, “we do STEM projects”. Sometimes it is a noun, often referring to a phantom new subject or discipline, an additional class period, or a topic viewed as interchangeable with robotics, coding, or 3-D printing. “We do STEM for 20 minutes each week”, “we have STEM in science class”, “we are starting STEM with robotics” are phrases we have heard in various settings.

Most experts agree that STEM should not be treated as the “new science” or, in fact, as an academic discipline at all. It is a way of thinking, collaborating, innovating, and problem-solving that models real-world situations. The Department of Education STEM 2026 report does a good job making this distinction. Further discussion of the need for connections among the component STEM disciplines can be found in STEM Integration in K-12 Education, a report published by the National Academies Press.


As providers of professional development and curriculum design services, STEM means the following to the educators at ProjectEngin:

  • A learning culture that embraces active problem-solving, not passive transfer of facts
  • Collaboration across different disciplines versus isolation in academic silos
  • An opportunity to fail and then move forward versus a “one strike and you’re out” assessment mentality
  • An ability to present, challenge, and defend ideas versus “death by PowerPoint”
  • And, most importantly, a focus on process not product

In our professional experience as teachers and engineers, that sounds a lot like Engineering Design and it forms the practices that we follow in our work with teachers and students. We truly believe that the “E” is the key to connections, collaboration, creativity, a problem-solving mentality, and a true STEM learning environment.

In order to maximize the impact of any professional development opportunity we first 3d PDneed to address where a school is on the spectrum of STEM self-definition and actual implementation. We have been most successful when taking a 3 dimensional view focused on a concept of three concentric layers.

We always works from the outside in, starting with the overall school culture. Depending on where a school is on the “STEM Spectrum”, we work with all teachers and administrators to define a STEM vision, designed to support a unified, collaborative approach. We actually take attendees through a modified version of the Engineering Design Process to help them craft a vision that acknowledges the constraints they have, defines criteria for success, and creates a model for an initiative that is sustainable and realistic. STEM should never be about one teacher, one classroom, one project. If that approach is used, it becomes another “layered-on” experience not an intrinsic part of a commitment to truly educating young people.

A large part of our work focuses on the second layer. STEM does not live in places where desks are in rows, where students sit passively while teachers transmit information, where failure is not an option, or where creativity and collaboration are not valued. The work required to transform the learning space, figuratively and literally, most often falls to the classroom teacher. New curriculum, technology, and resources are doomed to be under-utilized and ineffective if new classroom norms, practices, environments, expectations, and pedagogies are not in place or, at least, developing. That requires that a teacher has a chance to learn through modeling and reflection. We help them transition and evolve by leveraging what they are comfortable with and engaging them in new ways of supporting learning. Most true STEM projects, particularly Engineering Design projects, are active, group-based, and multi-disciplinary. Implementing something on that level requires both teaching topics that are new and teaching them very differently. Failure to acknowledge both most often leads to an unsustainable approach. It is simply too much at once. Our workshops at this level model the classroom environment and practices that will support a STEM approach. Teachers leave equipped with a range of activities and resources that are designed to be easily implemented and that we have constructed to engage students while providing hands-on experience of related scientific concepts.

We always suggest that schools determine that these first two levels are present or developing before tackling the inclusion of more extensive design projects, or actually adopting a more “STEM” curriculum. In our experience, curriculum that is inserted without creating a supportive environment in and out of the individual classroom rarely lasts and it often fails to create a better learning opportunity. Our most intensive work involves collaborating with teachers who have tried some shorter Engineering Design activities in their classroom and are now eager to implement more comprehensive, longer-term Engineering Design projects. That is the innermost dimension of the three layers.  Again, we try to honor the fact that teachers are teaching new material in a new way. We work with them to develop projects that they are comfortable with or help them to adapt our projects to their classes and expertise. We know that it is key to have some level of success with the implementation of that first Engineering Design project. No one expects everything to go perfectly, but we always hope for, and usually achieve, a level of student engagement and enough evidence of better learning to support teacher enthusiasm and confidence.

Although we customize our approach by looking at the three dimensions of the STEM spectrum, we always have two key goals in mind. We always hope to create a better learning experience for students and to develop educators who are advocates and experts in their own professional communities. Both are part of our vision for engineering sustainable STEM programs.


Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Maximizing the M in STEM

In many schools and classrooms, STEM is simply the new science. In many of our workshops and site visits, we deal with science teachers who seem to have become responsible for the STEM initiatives in their schools. At ProjectEngin, we remain committed to the idea that the E is the key to connecting many subjects. But we always try to include as many disciplines as possible in our curriculum materials. Here are a few ideas for developing some Engineering projects that lead from the other end of the acronym. They start with math and connect to science through Engineering Design projects and activities.

  1. Packaging Design – volume, geometry, 2D to 3D spatial awareness, artistic design, costing, environmental impacts, forces

Packaging is all around us and, in many cases, it has an enormous environmental and economic impact. We have projects for grades 4-12, ranging from 3 -10 classes in length. Most of them challenge students to design more environmentally friendly and cost efficient packaging.  In addition, they provide a platform to work on the spatial reasoning skills that have been found to be so critical in supporting success in math. Here are a few resources to get you started thinking about an M-based Engineering project.packagings

Impacts of some types of packaging

Plastic Packaging- from the Ellen MacArthur Foundation


  1. Assembly Lines and Rate Studiesrates, planning, optimization, human factors, product design

We use assembly line projects for a variety of reasons, ranging from the study of rates in math classes to developing an understanding of protein synthesis in biology. Setting up a mini-assembly line requires thinking about production rates of various operations and consideration of possible bottlenecks. It also involves a lot of collaboration and communication.  Finding the optimum production plan with limited resources provides options for a range of graphing and data analysis activities. We also use this project for more social studies-oriented activities related to the Industrial Revolution and current issues involving manufacturing conditions throughout the world. We like to start our projects out with a fun video, like this classic: Lucy in the Chocolate Factory !



  1.    The Power of Graphs – data analysis, visualization, artistic design, wide range of        science and social studies issues

Numbers and images are universal ways of communicating.  This is a skill that has become increasingly relevant in the age of Big Data. Our projects focus on the idea of using the Engineering Design Process to create a mathematically-based platform for creating awareness of a topic or issue.


Asking students to engineer an infographic or a bubble chart, reflective of the work of Hans Rosling, provides the basis for a great STEAM challenge. By selecting a topic related to science, such as health or climate issues, you can truly connect all of the letters in the acronym.

Embracing a STEM culture in your school offers amazing potential. But if you hope to realize its true value in creating a new learning experience, it needs to be more than the “new science”. You can start by maximizing the M. And remember, as we like to say, “E is the key” to content-rich, skills-based learning!



Posted in Uncategorized | Leave a comment